Site Loader
Rock Street, San Francisco

This experiment was carried out to understand how an Infra ruddy Spectrometer can be used to place the chemical bonds and construction of 13 organic liquids while associating them to their IR spectra obtained with the assistance of an attenuated transmittal accoutrement ( ATR ) and execute a quantitative analysis of fatty acerb methyl esters ( FAME ) in diesel/biodiesel blends by mensurating the optical density of the ester.

The chemical nature of gasoline, Diesel and lubricating oil were obtained with gasoline demoing a combination of intoxicant and aromatics and the likeliness of an ester ; diesel incorporating aromatics, lubricating oil was similar in composing to diesel with merely the varying CH2/CH3 ratio separating them. Biodiesel was seen to be really similar to Oleic acid methyl ester. Vegetable oil is besides seen to be similar to Biodiesel.

The part of the IR spectra which showed strong optical density was in the 3200-2800cm-1 scope occupied by the C-H stretches.

The FAME content in the Diesel sample gotten from quantitative analysis is 2.8 ( A±0.5 ) % .

The concentration of the unknown sample obtained with the assistance of the additive standardization secret plan is.

1.0 Introduction

Infrared ( IR ) spectrometry is a powerful tool which makes usage of typical wavelengths upon which chemical bonds in molecules absorb infrared radiation. This captive radiation causes alterations in the energy degree of diatomic bonds which can be related to stretching, quiver or rotary motion. The quantization energy degrees of bonds restrict the wavelengths at which the bonds can absorb Infrared. In IR spectrometry, the wavenumber ( I? ) is plotted against the per centum transmittal of incident radiation through a sample to obtain the IR spectrum. The wavenumber can be defined as the figure of complete wave forms that can be fitted into a distance of 1cm i.e. 1/wavelength and is straight relative to the degree of radiation. Percentage Transmittance can be defined as the per centum of radiation that passes through sample to the sensor without being absorbed. The relationship between Absorbance ( A ) and Transmittance ( T ) harmonizing to Beer Lamberts Law is shown as A = log10 ( I0/I ) = -log10 T = E›xCxL

Where ; Io is the incident strength

I is the familial strength

E› is the soaking up coefficient

C is the concentration of absorbing compound

L is the cell pathlength.

Infrared spectra can be acquired from samples every bit little as a few Aµg. This makes it possible to execute qualitative analysis of all three stages of affair i.e. solids, liquids and gases. Every compound produces different signature spectrum i.e. every set matches its peak place ( wave figure ) , and strength ( Rubinson and Rubinson, 2000 ) . It is for this ground that infrared can be used as a fingerprint for the designation of the molecular constituents of samples by fiting the spectrum of an unknown to a spectral library. In the absence of a suited library, a basic reading from first rules can be carried out ( Coates, 2000 ) . Another qualitative usage of infrared spectra apart from compound designation or comparing is to obtain structural information of functional groups ( Rubinson and Rubinson, 2000 ) .

Infrared spectra of organic compounds are divided into three parts ;

The Functional group part between 4000-1300cm-1

The Fingerprint part between 1300-910cm-1

The aromatic part between 910- 650cm-1

This experiment was carried out to understand how an Infra ruddy Spectrometer can be used to

Identify the chemical bonds and construction of 13 organic liquids while associating them to their IR spectra obtained with the assistance of an attenuated transmittal accoutrement ( ATR ) .

Perform a quantitative analysis of fatty acerb methyl esters ( FAME ) in diesel/biodiesel blends by mensurating the optical density of the ester.

2.0 EXPERIMENTAL

The chief setup used was a Thermo Scientific Nicolet is10 Fourier Transform Infrared ( FTIR ) Spectrometer which was set to take 36 scans per sample at a declaration of 4cm-1. Datas obtained from the spectrometer is processed with the assistance of Thermo Scientific OMNIC package. Two accoutrements ( ATR and Transmission cell ) were placed in the FTIR for usage in different parts of the experiment.

2.1 Qualitative Analysis

The Attenuated Total Reflectance ( ATR ) accoutrement is placed in the FTIR Spectrometer for this process. A beam of IR radiation which is directed into an optically heavy crystal ( for illustration ; a diamond crystal ) at an angle reflects through it based on the internal contemplation phenomenon thereby bring forthing an evanescent standing moving ridge at the crystal surface. The evanescent moving ridge base on ballss through 1-4Aµm of the sample situated on the crystal surface. Attenuated energy from the evanescent waves is passed back to the IR beam through the crystal and goes to a sensor which creates a spectrum.

The spectra were collected utilizing the ATR utilizing the processs presented in the research lab manual.

2.2 Quantitative Analysis

Transmission Cell Accessory ( BS EN14078 ) was placed in the FTIR Spectrometer to bring forth an infra-red spectrum from the sample. FAME content of Diesel was measured to demo the sum of biodiesel nowadays in the diesel blend.

The Diesel sample whose FAME content needed to be known was held in a K bromide cell with a known pathlength of 0.05cm. Oleic acerb methyl ester ( a suited Fame with a known concentration ) was analyzed in order to graduate the spectrometer. Series of standardization criterions utilizing a dissolver of spectrometric class cyclohexane were obtained with the Transmission Cell Accessory utilizing the stairss in the research lab manual.

3.0 RESULTS AND DISCUSSION

3.1 Interpretation of Spectra

Full IR spectra of all liquids ( a-h ) within the scope 4000-600cm-1 which were obtained from the experiment and magnified spectra of hydrocarbon liquids ( a-e and i-k ) within the wavenumber scope of 3200-2800cm-1 are analyzed demoing their similarities and differences. The liquids i-k incorporating the hydrocarbons are compared to those of a-e to acquire an thought of their chemical nature.

The full list of the organic liquids can be found in the research lab manual.

Fig 1: demoing the spectra of iso-octane, n-octane and n-hexadecane within the scope 4000-

600cm-1

CHn

1 ) CH2

3 ) CH3

4 ) CH3

4 ) CH3

3 ) CH3

2 ) CH2

1 ) CH2

3 ) CH2

2 ) CH2

1 ) CH2

CHn

CHn

Fig 2: demoing the spectra of iso-octane, n-octane and n-hexadecane within the scope 3200-

2800cm-1

Fig1. and Fig 2. show the spectras with the % Transmission plotted against wavenumbers ( cm-1 ) for three methane seriess. The C-H in the methane seriess is seen to absorb chiefly in the scope of 2970-2850cm-1 with C-H flexing happening in the 1500-1350cm-1 scope. Figure 2 shows the spectrum in the 3200-2800cm-1 scope.

iso-octane hypertext transfer protocol: //www.chem.purdue.edu/gchelp/molecules/isooct.gif ( C8H18 ) :

Has a Molecular expression of CH3- ( CH2 ) 6-CH3

The sets, quivers and wavenumbers are identified in the spectrum are as follows:

CH2 symmetrical stretching quivers at weak strength

CH2 Asymmetrical stretching quivers at weak strength

CH3 crisp extremum with symmetrical stretching quivers at 2950cm-1

The CH2/CH3 ratio is low which means that the figure of CH2 bonds in the methane series concatenation is little. Thus the C-CH2-C extremums appear as little shoulders on the big C-CH3 extremums. C-H Bending occurs in the scope 1500-1350cm-1

n-octane ; ( C8H18 ) :

This is a straight-chain methane series.

CH2 symmetrical stretching quivers at medium strength

CH2 Asymmetrical stretching quivers at medium strength

CH3 crisp extremum with symmetrical stretching quivers at 2920cm-1

CH3 Asymmetrical stretching quivers at medium strength

The CH2/CH3 ratio is higher than the iso-octane which conforms to their molecular constructions. C-H Bending occurs in the scope 1500-1350cm-1

n-hexadecane C16H34

This is a consecutive concatenation methane series with Molecular formular of CH3- ( CH2 ) 28-CH3

CH2 symmetrical stretching quivers at a strong strength

CH3 crisp extremum with symmetrical stretching quivers at 2920cm-1

CH3 Asymmetrical stretching quivers of weak strength

There is a high CH2/CH3 ratio which is signified by high CH2 soaking up. This conforms to the CH2/CH3 ratio in its molecular construction. The C-CH3 extremums are similar to that of n-octane because they have the same figure of C-CH3 groups. C-H Bending occurs in the scope 1500-1350cm-1

All three methane seriess show Stretching of C-H to be stronger than the C-H bending.

Fig 3: demoing the spectra of benzine, Ethyl-benzene and n-octanol within the scope 4000-

600cm-1

4 ) CH3

3 ) CH3

4 ) CH3

1 ) CH2

C=C-H

C=C-H

C-O

O-H

C-H

C-H

3 ) CH3

1 ) CH2

CHn

C=C

CHn

C=C

Fig 4: demoing the spectra of benzine, and Ethyl-benzene within the scope 3200-2800cm-1

Benzene ; C6H6

An aromatic ring construction dominated by C=C, C-H bonds. From Fig 3 and Fig 4 we can infer that Benzene has C=C-H stretching bonds with weak strength within the scope of 3100-3000cm-1 in the stretching part of the spectra. It besides has medium strength C=C bands at 1500cm-1 and C-H medium strength and strong strength flexing sets severally around 1050cm-1 and 670cm-1 ( out-of-plane crook ) .

Ethyl-benzene

A ring construction with extra C-H bonds. From the construction, Ethyl-benzene consists of the benzine compound and an ethyl group. Hence From Fig 3 and Fig 4 we see that it has C-H stretching sets listed below every bit good as weak strength C=C-H sets within 3100-3000cm-1, average strength C=C bands around 1500cm-1 and C-H bending around 1450cm-1 and in the scope of 700-650cm-1.

CH2 symmetrical stretching quivers of weak strength

CH3 symmetrical stretching quivers at 2920cm-1

CH3 Asymmetrical stretching quivers of weak strength

The benzine ring does non hold C-H stretch sets. Comparing the spectra of the pealing constructions from Fig 4 demoing Benzene and Ethyl-benzene, we can see that the C=C-H stretch sets of Benzene are at a higher soaking up than that of Ethyl-benzene. This may be due to the presence the C-H stretch sets of the ethyl group attached to the ring in the ethyl-benzene.

n-octanol, C8H18O

A consecutive concatenation intoxicant which has a molecular construction of CH3- ( CH2 ) 7-OH.

In line with the molecular construction, the spectrum in Fig 3 shows the undermentioned: There is a wide O-H stretching set between 3500-3100cm-1 of medium strength, a C-O set of strong soaking up strength at a 1200-1000cm-1 scope. C-H stretching sets of strong strength are besides present between 3000-2800cm-1range because they dominate the molecular construction. These C-H sets are as follows:

CH2 symmetrical stretching quivers at medium strength

CH3 crisp extremum with symmetrical stretching quivers at 2910cm-1

CH3 Asymmetrical stretching quivers of weak strength

Fig 5: demoing the spectra of Oleic acid methyl ester, TCE and Petrol within the scope 4000-600cm-1

CHn

C-O

C-O

C-H

C=O

4 ) CH3

C-Cl

CHn

1 ) CH2

3 ) CH3

O-H

C=C-H

3 ) CH3

1 ) CH2

Oleic acid methyl ester

The construction shows the presence of C=O, C-O and C-H bonds. These are besides identified in the spectra in Fig 5. The C-O set is absorbed at a medium strength within a scope of 1300-1100cm-1. The CHn bending occurs at a medium strength within the 1500-1400cm-1 scope. The C=O stretch set occurs at a strong strength with a crisp extremum around 1740cm-1. The C=C-H stretch set occurs at a weak strength around 3000cm-1. The C-H stretch sets identified are listed below:

CH2 symmetrical stretching quivers at medium strength soaking up at 2850cm-1

CH3 crisp extremum with symmetrical stretching and strong strength soaking up at 2920cm-1

Tetrachloroethylene ( TCE )

The construction of this liquid shows that a major bond of C-Cl exists and this is reinforced by the spectra in Fig 5. The spectrum shows the C-Cl bond holding strong strengths of soaking up between the 950-750cm-1 scope. Although C=C is present in the construction it is non absorbed in the spectra and is hence non detected.

Gasoline

In order to place the bonds and understand the chemical nature of gasoline its spectra in Figure 5 and 6 were compared with spectra from Figures 1-4. The assorted comparings are shown below.

The first wide extremum has a weak strength of soaking up and falls within the scope of 3300-3100cm-1. The set which closely resembles this is the O-H set from n-octanol in Figure 3. It can hence be assumed that this weak strength set is an O-H group.

Three stretching extremums of strengths runing between medium to strong occur within the 3000-2800cm-1 scope. Upon comparing with the methane seriess which show strong extremums in this part, it can be inferred that the extremums are C-H sets with the undermentioned belongingss ;

CH2 symmetrical stretching quivers at a medium strength around 2870cm-1

CH3 symmetrical stretching quivers at a strong strength around 2925cm-1

CH3 Asymmetrical stretching quivers of strong strength around 2960cm-1

Bending of changing strength from strong to weak occurs within the 1500-1350cm-1 part and this corresponds to that of the methane seriess and can be hence be assumed to be a CHn crook.

A weak set is located between 1100-1000cm-1 and upon comparing it closely resembles the C-O in the ester and n-octanol. It can hence be assumed that gasoline has a C-O group.

A aggregation of strong strength sets is observed between 900-600cm-1 and upon comparing to methane seriess and aromatics in Figures 1-4 it corresponds to the out-of-plane C-H crook of benzine. Petrol may be assumed to possess an aromatic group.

Fig 6: demoing the spectra of Petrol, Diesel, and Lube oil within the scope 3200-2800cm-1

Fig 7: demoing the spectra of Diesel, Lube oil and Biodiesel within the scope 4000-600cm-1

C=C-H

CHn

CHn

C=C

C=C

C-O

2 ) CH2

4 ) CH3

C=O

4 ) CH3

3 ) CH3

1 ) CH2

1 ) CH2

1 ) CH2

CHn

3 ) CH3

3 ) CH3

Diesel fuel

The three extremums between 3000-2850cm-1 from the Diesel spectra in Figure 6 and 7 are compared to the extremums in the same wavenumber part in Figures 1-4. They are identified as follows:

CH2 symmetrical stretching quivers at a medium strength around 2850cm-1

CH2 asymmetrical stretching quivers at a weak strength around 2870cm-1

CH3 symmetrical stretching quivers at a strong strength around 2920cm-1

CH3 Asymmetrical stretching quivers of medium strength around 2960cm-1

The Diesel spectrum in Fig 7 is compared with the methane seriess and aromatic spectra of Fig 1-4. The medium strength band around 1500cm-1 corresponds to the aromatic C=C bond of benzine and ethyl-benzene in Fig 3. Diesel can hence be assumed to incorporate aromatics.

Around 1400cm-1 a medium strength set is observed and compared with the spectra in Fig. 1-4. The closest similarity is found in the Ethyl-benzene spectra in Fig 3 which brings the premise that the set is a CHn crook.

Lubricating oil

Figures 6 and 7 contain the spectra of lubricating oil which is seen to be really similar to that of Diesel. They both have sets of similar C-H stretch soaking ups, C-H crook and C=C stretch. The lone difference being that the CH2/CH3 ratio of Lubricating oil is somewhat lower than that of Diesel which is manifested in figure 6 with the asymmetric C-CH2-C extremum looking as a little ‘shoulder ‘ on the side of the symmetric C-CH3-C extremum. All the bonds present are as follows:

CH2 symmetrical stretching quivers at a medium strength around 2850cm-1

CH2 asymmetrical stretching quivers at a weak strength around 2870cm-1

CH3 symmetrical stretching quivers at a strong strength around 2920cm-1

CH3 Asymmetrical stretching quivers of medium strength around 2960cm-1

The C=C medium strength band around 1500cm-1

CHn crook at a medium soaking up strength around 1400cm-1

Biodiesel

Upon comparing of the Biodiesel spectrum in Figure 7 with the spectrum from Figure 1-6 it is observed that it bears really close similarities to that of Oleic acid methyl ester in Figure 5.

We hence have,

C-O set absorbed at a medium strength within a scope of 1300-1100cm-1.

The CHn crook happening at a medium strength within the 1500-1400cm-1 scope.

The C=O stretch set happening at a strong strength with a crisp extremum around 1740cm-1.

The C=C-H stretch set happening at a weak strength around 3000cm-1.

The C-H stretch sets identified are listed below:

CH2 symmetrical stretching quivers at medium strength soaking up at 2850cm-1

CH3 crisp extremum with symmetrical stretching and strong strength soaking up at 2920cm-1

Vegetable oil

Upon comparing of Vegetable oil spectrum in Figure 8 with all the spectra from Figures 1-7 it is observed to be really similar to the spectrum of Biodiesel. Hence it has the followers,

CH2 symmetrical stretching quivers at medium strength soaking up at 2850cm-1

CH3 crisp extremum with symmetrical stretching and strong strength soaking up at 2920cm-1

The C=O stretch set happening at a strong strength with a crisp extremum around 1740cm-1

The C=C-H stretch set happening at a weak strength around 3000cm-1

The C-O stretch set absorbed at a medium strength within a scope of 1300-1100cm-1

Fig 8: demoing the spectra of Vegetable oil within the scope 4000-600cm-1

C=C-H

C=O

C-O

CHn

3 ) CH3

1 ) CH2

4.0 CALIBRATION CALCULATIONS

Actual weight of FAME =124.96g

Therefore, Actual concentration of FAME in 25ml of cyclohexane =

Actual concentrations of the standardization solutions are calculated and placed as shown in this illustration ;

Examples: For 0.5g/l nominal concentration i.e. 1cm3 of 4.998g/l standard solution diluted to 10cm3 we have ;

= 2.9988g/l

Table 1 demoing Actual Concentration and optical density of solutions used for standardization

Nominal Concentration

( gL-1 )

Actual Concentration

Q ( gL-1 )

Optical density

0.50

0.4998

0.0934

1.87

1.00

0.9996

0.173

3.46

2.00

1.9992

0.338

6.76

3.00

2.9988

0.500

10.00

5.00

4.9980

0.641

12.82

Unknown ( diesel sample )

2.5 ( A±0.4 )

0.381 ( A±0.001 )

7.62 ( A±0.001 )

Example of standardization map computation

Calculating the standardization map for a cell of standard pathlength 1cm for all concentrations we have ;

For existent concentration of 0.4998gL-1,

Fig. 9: demoing the standardization secret plan of optical density against concentration for the FAME standard solutions

From the secret plan in Fig 9 the arrested development analysis is obtained as shown in Table 2.

Table 2: demoing the consequences of arrested development analysis performed on standardization secret plan

A

Coefficients

Standard Error

Intercept

1.28090625

0.804173241

X Variable 1

2.479554322

0.287136592

Arrested development Statisticss

Multiple R

0.980472218

R Square

0.961325771

Adjusted R Square

0.948434361

Standard Error

1.026880186

Observations

5

Therefore ; R2 = 0.9613

Intercept ( B ) = 1.3A±0.8

Gradient ( a ) = 2.5A±0.3

A/L = a.q + baˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦eqn1

7.62 ( A±0.001 ) = [ 2.5 ( A±0.3 ) A- Q ] + 1.3 ( A±0.8 )

Calculating mistake associated with measuring utilizing eqn1 ;

aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦eqn2

Taking the numerator we have ; 7.62 ( A±0.001 ) – 1.3 ( A±0.8 ) = 6.3A±0.8

Converting to comparative mistakes we have ;

Therefore ; q

The FAME content of the Diesel sample is calculated utilizing the equation ;

aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦aˆ¦.eqn 3

Where X ( dilution factor ) = 10 ( A±0.02 )

vitamin D ( denseness of FAME at 20oC ) = 880.0kgm-3 = 880.0 ( A±0.1 ) gL-1

L ( the existent pathlength ) = 0.05cm

a ( gradient ) = 2.5A±0.3

B ( intercept ) = 1.3A±0.8

Mistake in X is A±0.02 and is gotten from the usage of a 10ml volumetric flask.

Mistake in vitamin D is A±0.1.

Uniting eqn2 and eqn3, the equation is simplified to acquire ;

= 2.84 ( A±16.0 % ) = 2.8 ( A±0.5 ) %

5.0 SOURCES OF ERROR

Optical densities in the signifier of little extremums were obtained from spectrometer constituents, the ATR crystal and presence of C dioxide and H2O vapor in the air.

Mistake associated with deliberation of FAME sample

Systematic mistake associated with utilizing the volumetric tubing.

“ Instability in the moving ridge figure graduated table of the FT-IR spectra. The thermic enlargement and contraction of the pit of the mention optical maser in a typical commercial instrument is found to bring forth alterations in the optical maser wavenumber of A±0.034 cm-1 ” ( Weis and Ewing, 1998 )

6.0 Decision

The FAME content in the Diesel sample gotten from quantitative analysis is 2.8 ( A±0.5 ) % .

The concentration of the unknown sample obtained with the assistance of the additive standardization secret plan is.

The part of the IR spectra which showed strong optical density was in the 3200-2800cm-1 scope occupied by the C-H stretches.

Comparison of C-H stretch sets in the organic liquids spectra showed that the comparative sizes of CH2 and CH3 extremums were influenced by the CH2/CH3 ratio which is signified by high CH2 or CH3 soaking up. This phenomenon corresponded to the molecular constructions of each compound.

Upon comparing of liquids a-h with i-k, an thought of the chemical nature of gasoline, Diesel and lubricating oil were obtained. Apart from the C-H stretch bonds present they had the undermentioned composings

Petrol is seen to incorporate an O-H group which may bespeak presence of intoxicant, C-H bend similar to benzene bespeaking it may incorporate aromatics, and a weak C-O comparable to that of an ester or an intoxicant.

Diesel is seen to incorporate a C=C group bespeaking the presence of benzine, and a CHn crook besides bespeaking benzine. It is hence mostly aromatic.

Lubricating Oil is similar to diesel except it has a lower CH2/CH3 ratio.

Biodiesel is found to hold a similar chemical nature to Oleic acid methyl ester.

Vegetable oil is besides seen to be similar to Biodiesel.

Post Author: admin